<output id="cvpro"></output>
          精品无码久久久久国产,青娱乐极品视觉盛宴国产视频,成人伊人精品色xxxx视频,国产精品久久久久av,一本久久知道综合久久,午夜无码区在线观看,成人性做爰aaa片免费,中文字幕乱码一区av久久不卡

          您好,歡迎來到山東合運(yùn)電氣有限公司網(wǎng)站!

          關(guān)于合運(yùn) | 聯(lián)系我們 | 用戶須知 | sitemap

          400-088-6921155-8888-6921

          電源問答

          首頁 > 電源問答

          派克變換

          時間:2022-11-13 人氣: 來源:山東合運(yùn)電氣有限公司

            派克變換(也譯作帕克變換,英語:Park's Transformation),是目前分析同步電動機(jī)運(yùn)行最常用的一種坐標(biāo)變換,由美國工程師派克(R.H.Park)在1929年提出。派克變換將定子的a,b,c三相電流投影到隨著轉(zhuǎn)子旋轉(zhuǎn)的直軸(d軸),交軸(q軸)與垂直于dq平面的零軸(0軸)上去,從而實(shí)現(xiàn)了對定子電感矩陣的對角化,對同步電動機(jī)的運(yùn)行分析起到了簡化作用。

          定義


            派克正變換:


            {\displaystyle{\mathbf{i}}_{dq0}={\mathbf{P}}{\mathbf{i}}_{abc}={\frac{2}{3}}\left[{\begin{array}{*{20}c}{\cos\theta}&{\cos\left({\theta-120^{\circ}}\right)}&{\cos\left({\theta+120^{\circ}}\right)}\\{-\sin\theta}&{-\sin\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{a}}\\{i_{b}}\\{i_{c}}\\\end{array}}\right]}{\displaystyle{\mathbf{i}}_{dq0}={\mathbf{P}}{\mathbf{i}}_{abc}={\frac{2}{3}}\left[{\begin{array}{*{20}c}{\cos\theta}&{\cos\left({\theta-120^{\circ}}\right)}&{\cos\left({\theta+120^{\circ}}\right)}\\{-\sin\theta}&{-\sin\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}\\{\frac{1}{2}}&{\frac{1}{2}}&{\frac{1}{2}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_{a}}\\{i_{b}}\\{i_{c}}\\\end{array}}\right]}


            逆變換:


            {\displaystyle{\mathbf{i}}_{abc}={\mathbf{P}}^{-1}{\mathbf{i}}_{dq0}=\left[{\begin{array}{*{20}c}{\cos\theta}&{-\sin\theta}&1\\{\cos\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta-120^{\circ}}\right)}&1\\{\cos\left({\theta+120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}&1\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_7xwrcws}\\{i_{q}}\\{i_{0}}\\\end{array}}\right]}{\displaystyle{\mathbf{i}}_{abc}={\mathbf{P}}^{-1}{\mathbf{i}}_{dq0}=\left[{\begin{array}{*{20}c}{\cos\theta}&{-\sin\theta}&1\\{\cos\left({\theta-120^{\circ}}\right)}&{-\sin\left({\theta-120^{\circ}}\right)}&1\\{\cos\left({\theta+120^{\circ}}\right)}&{-\sin\left({\theta+120^{\circ}}\right)}&1\\\end{array}}\right]\left[{\begin{array}{*{20}c}{i_7xwrcws}\\{i_{q}}\\{i_{0}}\\\end{array}}\right]}


            派克變換也作用在定子電壓與定子繞組磁鏈上:{\displaystyle{\mathbf{u}}_{dq0}={\mathbf{P}}{\mathbf{u}}_{abc}}{\displaystyle{\mathbf{u}}_{dq0}={\mathbf{P}}{\mathbf{u}}_{abc}},{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P}}{\mathbf{\Psi}}_{abc}}{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P}}{\mathbf{\Psi}}_{abc}}


          幾何解釋

          微信截圖_20221113230949.png

            上圖描繪了派克變換的幾何意義,定子三相電流互成120度角,{\displaystyle\delta}\delta為定子電流落后于它們對應(yīng)的相電壓的角度。直軸與交軸電流分別等于定子三相電流在d軸與q軸上的投影。(圖中的比例系數(shù){\displaystyle{\sqrt{\frac{3}{2}}}}{\displaystyle{\sqrt{\frac{3}{2}}}}是由于圖中所采用的是正交形式的派克變換)d-q坐標(biāo)系在空間中以角速度{\displaystyle\omega}\omega逆時針旋轉(zhuǎn),故{\displaystyle\theta=\omega t}{\displaystyle\theta=\omega t}以d軸領(lǐng)先a相軸線的方向?yàn)檎.?dāng)定子電流為三相對稱的正弦交流電時,{\displaystyle i_7xwrcws}{\displaystyle i_7xwrcws},{\displaystyle i_{q}}{\displaystyle i_{q}}為直流電流,{\displaystyle i_{0}=0}{\displaystyle i_{0}=0}。


          用派克變換化簡同步發(fā)電機(jī)基本方程


          變換后的磁鏈方程


            磁鏈方程:


            {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{abc}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{abc}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}


            上式中的電感系數(shù)矩陣{\displaystyle{{\mathbf{L}}_{SS}},{{\mathbf{L}}_{SR}},{{\mathbf{L}}_{RS}},{{\mathbf{L}}_{RR}}}{\displaystyle{{\mathbf{L}}_{SS}},{{\mathbf{L}}_{SR}},{{\mathbf{L}}_{RS}},{{\mathbf{L}}_{RR}}}事實(shí)上都含有隨時間變化的角度參數(shù)[1],使得方程求解困難。


            現(xiàn)對等式兩邊同時左乘{(lán)\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]},其中{\displaystyle{\mathbf{U}}}{\displaystyle{\mathbf{U}}}為三階單位矩陣。方程化為:


            {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{P}}^{-1}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{L}}_{SS}}&{{\mathbf{L}}_{SR}}\\{{\mathbf{L}}_{RS}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{{\mathbf{P}}^{-1}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}


            {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}}&{{\mathbf{PL}}_{SR}}\\{{\mathbf{L}}_{RS}{\mathbf{P}}^{-1}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{\Psi}}_{dq0}}\\{{\mathbf{\Psi}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}}&{{\mathbf{PL}}_{SR}}\\{{\mathbf{L}}_{RS}{\mathbf{P}}^{-1}}&{{\mathbf{L}}_{RR}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]}


            其中{\displaystyle{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}=\left[{\begin{array}{*{20}c}{L_7xwrcws}&{}&{}\\{}&{L_{q}}&{}\\{}&{}&{L_{0}}\\\end{array}}\right]\triangleq{\mathbf{L}}_{dq0}}{\displaystyle{\mathbf{PL}}_{SS}{\mathbf{P}}^{-1}=\left[{\begin{array}{*{20}c}{L_7xwrcws}&{}&{}\\{}&{L_{q}}&{}\\{}&{}&{L_{0}}\\\end{array}}\right]\triangleq{\mathbf{L}}_{dq0}}。


            ①變換后的電感系數(shù)都變?yōu)槌?shù),可以假想dd繞組,qq繞組是固定在轉(zhuǎn)子上的,相對轉(zhuǎn)子靜止。


            ②派克變換陣對定子自感矩陣{\displaystyle{\mathbf{L}}_{SS}}{\displaystyle{\mathbf{L}}_{SS}}起到了對角化的作用,并消去了其中的角度變量。{\displaystyle{L_7xwrcws},{L_{q}},{L_{0}}}{\displaystyle{L_7xwrcws},{L_{q}},{L_{0}}}為其特征根。


            ③變換后定子和轉(zhuǎn)子間的互感系數(shù)不對稱,這是由于派克變換的矩陣不是正交矩陣。


            ④{\displaystyle{L_7xwrcws}}{\displaystyle{L_7xwrcws}}為直軸同步電感系數(shù),其值相當(dāng)于當(dāng)勵磁繞組開路,定子合成磁勢產(chǎn)生單純直軸磁場時,任意一相定子繞組的自感系數(shù)。


          變換后的電壓方程


            電壓方程:


            {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{abc}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{abc}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{abc}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}


            現(xiàn)對等式兩邊同時左乘{(lán)\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{\mathbf{P}}&{}\\{}&{\mathbf{U}}\\\end{array}}\right]},其中{\displaystyle{\mathbf{U}}}{\displaystyle{\mathbf{U}}}為三階單位矩陣。方程化為:


            {\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{P{\dot{\Psi}}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{P{\dot{\Psi}}}}_{abc}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]}


            由{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P\Psi}}_{abc}}{\displaystyle{\mathbf{\Psi}}_{dq0}={\mathbf{P\Psi}}_{abc}},


            對兩邊求導(dǎo),得{\displaystyle{\mathbf{\dot{\Psi}}}_{dq0}={\mathbf{{\dot{P}}\Psi}}_{abc}+{\mathbf{P{\dot{\Psi}}}}_{abc}}{\displaystyle{\mathbf{\dot{\Psi}}}_{dq0}={\mathbf{{\dot{P}}\Psi}}_{abc}+{\mathbf{P{\dot{\Psi}}}}_{abc}},


            所以{\displaystyle{\mathbf{P{\dot{\Psi}}}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}\Psi}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}}{\displaystyle{\mathbf{P{\dot{\Psi}}}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}\Psi}}_{abc}={\mathbf{\dot{\Psi}}}_{dq0}-{\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}}


            其中{\displaystyle{\mathbf{{\dot{P}}P}}^{-1}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]}{\displaystyle{\mathbf{{\dot{P}}P}}^{-1}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]},令{\displaystyle{\mathbf{S}}={\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{\Phi _7xwrcws}\\{\Phi _{q}}\\{\Phi _{0}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\omega\Psi _{q}}\\{-\omega\Psi _7xwrcws}\\{}\\\end{array}}\right]}{\displaystyle{\mathbf{S}}={\mathbf{{\dot{P}}P}}^{-1}{\mathbf{\Psi}}_{dq0}=\left[{\begin{array}{*{20}c}{}&\omega&{}\\{-\omega}&{}&{}\\{}&{}&{}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{\Phi _7xwrcws}\\{\Phi _{q}}\\{\Phi _{0}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{\omega\Psi _{q}}\\{-\omega\Psi _7xwrcws}\\{}\\\end{array}}\right]}


            于是有{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{dq0}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]-\left[{\begin{array}{*{20}c}{\mathbf{S}}\\{}\\\end{array}}\right]}{\displaystyle\left[{\begin{array}{*{20}c}{{\mathbf{U}}_{dq0}}\\{{\mathbf{U}}_{fDQ}}\\\end{array}}\right]=\left[{\begin{array}{*{20}c}{{\mathbf{r}}_{S}}&{}\\{}&{{\mathbf{r}}_{R}}\\\end{array}}\right]\left[{\begin{array}{*{20}c}{-{\mathbf{i}}_{dq0}}\\{{\mathbf{i}}_{fDQ}}\\\end{array}}\right]+\left[{\begin{array}{*{20}c}{{\mathbf{\dot{\Psi}}}_{dq0}}\\{{\mathbf{\dot{\Psi}}}_{fDQ}}\\\end{array}}\right]-\left[{\begin{array}{*{20}c}{\mathbf{S}}\\{}\\\end{array}}\right]}


            上式右邊第一項(xiàng)為繞組電阻的壓降,第二項(xiàng)為變壓器電勢,第三項(xiàng)為發(fā)電機(jī)電勢或旋轉(zhuǎn)電勢。


          關(guān)于派克變換,小編為大家就分享這些。歡迎聯(lián)系我們合運(yùn)電氣有限公司,以獲取更多相關(guān)知識。

          相關(guān)新聞

          首頁 產(chǎn)品 手機(jī) 頂部
          在線客服
          聯(lián)系方式

          熱線電話

          15588886921

          400熱線

          400-0886921

          上班時間

          周一到周五

          郵箱地址

          2466458158@qq.com

          二維碼
          主站蜘蛛池模板: 加勒比中文无码久久综合色| 国产人成视频在线观看| 中文字幕人成人乱码亚洲| 启东市| 国产成人综合在线观看不卡 | 人人爽人人澡人人高潮| 日本免费一区在线播放| 国产熟女高潮一区二区三区| 免费观看性行为视频的网站| 国产初高中生视频在线观看| 国产精品久免费的黄网站| 亚洲综合精品在线观看中文字幕| 18禁动漫一区二区三区| 在线观看国产精品普通话对白精品| 成人亚洲a片v一区二区三区蜜臀| 都兰县| 亚洲精品久久久久久婷婷| 国产午夜精品久久一二区| 国产精品十八禁在线观看| 亚洲乱码中文字幕小综合 | 欧美粗大| 亚洲精品无码一区二区| 欧美日韩一区二区免费视频| 无码人妻丰满熟妇奶水区码| 亚洲日本精品国产第一区| 久久精品国产99国产精品亚洲| 伊人久久大香线蕉AV网禁呦| 亚洲综合无码无在线观看| 人人妻人人澡人人爽欧美一区九九| 在线播放亚洲第一字幕| 日本在线高清不卡免费播放| 成人性生交大片免费卡看| 加勒比在线一区二区三区| 日本高清一区免费中文视频 | 亚洲精品国产综合久久久久紧 | 一本一本久久a久久精品综合| 德昌县| 中文字幕丰满乱孑伦无码专区| 人妻精品久久久久中文字幕69 | 日本精品高清一区二区| 少妇被日到高潮的视频|